Evidence-based decision support

Protocol development in integrative medicine is not typically a simple process. Individuals require individualized care, and what works for one patient may not work for another.

To establish these protocols, we first developed a Rating Scale that could be used to discern the rigor of evidence supporting a specific nutrient’s therapeutic effect.

The following protocols were developed using only A through C-quality evidence.
weight management protocol table

Ingredients for inflammation support

Inflammation can have both positive and negative health effects. Acute inflammation works with the immune system to address infectious and non-infectious cellular damage. (1) However, when inflammation becomes chronic, it can seriously impact health. For example, studies have shown a correlation between chronic inflammation and all-cause, cancer, cardiovascular, and cerebrovascular mortality. (10)(12)


Curcumin (Curcuma longa)

600–1,000 mg, total per day, minimum 8–10 weeks (4)(13)

  • Curcumin decreased C-reactive protein (CRP) (-0.58 mg/l), tumor necrosis factor-alpha (TNF-α) (-3.48 pg/ml), interleukin 6 (IL-6) (-1.31 pg/ml), and malondialdehyde (MDA) (-0.33 umol/l), and increased superoxide dismutase (SOD) activity (20.51 u/l) and total antioxidant capacity (TAC) (0.21 mmol/l). (3)
  • In patients with various chronic diseases, curcumin decreased CRP (-3.67 mg/l) and hs-CRP concentrations. (4
  • Compared to placebo, curcumin decreased IL-6 by ~49%, TNF-α by ~63%, and MDA by ~38% in patients with diabetes mellitus. (13)

Omega-3 fatty acids (EPA/DHA)

2.5 g, total per day, minimum 12 weeks (7)(15

  • In patients with various health conditions, omega-3s moderately decreased serum CRP, as well as IL-6 and TNF-α with a smaller effect. (5)
  • Compared to placebo, omega-3 supplementation decreased total serum cortisol by 19% and IL-6 levels by 33% during a stressful event, and CRP by ~30%, IL-6 by ~22%, and TNF-α by ~16% in patients with chronic kidney disease undergoing hemodialysis. (7)(15)

Address inflamation with the evidence-based ingredients in this protocol. 

Probiotics

1.6 × 109 CFU, total per day, minimum 8 weeks (8)(11)

  • Prebiotics and probiotics modulate the intestinal microbiome and decrease oxidative stress and inflammation by increasing intestinal anaerobes and maintaining the integrity of the intestinal barrier. (6
  • Compared to placebo, a multistrain synbiotic reduced TNF-α by ~6% and hs-CRP by ~10% in postmenopausal females with obesity and a history of hormone-receptor-positive breast cancer. (11
  • Compared to placebo, Lactobacillus rhamnosus GG reduced IL1-Beta and lipopolysaccharide concentrations by ~ 35% and ~30%, respectively, in patients with CAD. (8)


Quercetin

≥ 500 mg, total per day, minimum of 8 weeks (2)(9)(14)

  • In individuals with chronic diseases, quercetin had a large effect on decreasing IL-6 and a smaller effect on decreasing serum CRP. (9
  • Quercetin decreased TNF-α and IL-6 in females with polycystic ovarian syndrome. (14)
  • Compared to placebo, quercetin increased serum TAC by ~20% in post-myocardial infarction patients. (2)

Authors

Natacha Montpellier, ND

Medical Science Liaison

Dr. Natacha Montpellier is a registered naturopathic doctor in Ontario, Canada. She currently maintains a private clinical practice focused on hormonal and reproductive health. Dr. Natacha, ND, also serves as a Medical Science Liaison on Fullscript’s Medical Advisory team.

Christopher Knee, ND, MSc

Medical Education Manager

Dr. Christopher Knee is a naturopathic doctor, clinical researcher, and natural health and wellness expert from Ottawa, Canada. As the research and education manager for Fullscript’s Integrative Medical Advisory team, he oversees research projects and the development of medical education content for practitioners and patients across North America. He completed Bachelor's and Master's degrees from the University of Guelph in human kinetics and human biology and nutritional sciences, respectively, and naturopathic training at the Canadian College of Naturopathic Medicine. He's passionate about evidence-informed practice, patient education, health services research, and natural medicines. He has almost 15 years of academic, industry, and advisory experience, having worked with various organizations, including The Ottawa Hospital, the Ottawa Police Service, the University of Ottawa Heart Institute, the Ontario Association of Naturopathic Doctors, the Canadian College of Naturopathic Medicine, Valeant Pharmaceuticals, Nordion, and Pfizer.

References

  1. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208 
  2. Dehghani, F., Sezavar Seyedi Jandaghi, S. H., Janani, L., Sarebanhassanabadi, M., Emamat, H., & Vafa, M. (2021). Effects of quercetin supplementation on inflammatory factors and quality of life in post-myocardial infarction patients: A double blind, placebo-controlled, randomized clinical trial. Phytotherapy Research, 35(4), 2085–2098. https://doi.org/10.1002/ptr.6955 (B)
  3. Dehzad, M. J., Ghalandari, H., Nouri, M., & Askarpour, M. (2023). Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine, 164, 156144. https://doi.org/10.1016/j.cyto.2023.156144 (A)
  4. Gorabi, A. M., Abbasifard, M., Imani, D., Aslani, S., Razi, B., Alizadeh, S., Bagheri-Hosseinabadi, Z., Sathyapalan, T., & Sahebkar, A. (2022). Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: An updated meta-analysis of randomized controlled trials. Phytotherapy Research, 36(1), 85–97. https://doi.org/10.1002/ptr.7284 (A)
  5. Kavyani, Z., Musazadeh, V., Fathi, S., Hossein Faghfouri, A., Dehghan, P., & Sarmadi, B. (2022). Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. International Immunopharmacology, 111, 109104. https://doi.org/10.1016/j.intimp.2022.109104 (A) 
  6. Lopes, R. de C. S. O., Balbino, K. P., Jorge, M. D. P., Ribeiro, A. Q., Martino, H. S. D., & Alfenas, R. D. C. G. (2018). Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: A systematic review. Nutricion Hospitalaria, 35(3), 722–730. https://doi.org/10.20960/nh.1642 (A)
  7. Madison, A. A., Belury, M. A., Andridge, R., Renna, M. E., Rosie Shrout, M., Malarkey, W. B., Lin, J., Epel, E. S., & Kiecolt-Glaser, J. K. (2021). Omega-3 supplementation and stress reactivity of cellular aging biomarkers: An ancillary substudy of a randomized, controlled trial in midlife adults. Molecular Psychiatry, 26(7), 3034–3042. https://doi.org/10.1038/s41380-021-01077-2 (B)
  8. Moludi, J., Kafil, H. S., Qaisar, S. A., Gholizadeh, P., Alizadeh, M., & Vayghyan, H. J. (2021). Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients: A double blind placebo controlled randomized clinical trial. Nutrition Journal, 20(1), 47. https://doi.org/10.1186/s12937-021-00703-7 (C)
  9. Ou, Q., Zheng, Z., Zhao, Y., & Lin, W. (2020). Impact of quercetin on systemic levels of inflammation: A meta-analysis of randomised controlled human trials. International Journal of Food Sciences and Nutrition, 71(2), 152–163. https://doi.org/10.1080/09637486.2019.1627515 (A)
  10. Proctor, M. J., McMillan, D. C., Horgan, P. G., Fletcher, C. D., Talwar, D., & Morrison, D. S. (2015). Systemic inflammation predicts all-cause mortality: A glasgow inflammation outcome study. PloS One, 10(3), e0116206. https://doi.org/10.1371/journal.pone.0116206
  11. Raji Lahiji, M., Zarrati, M., Najafi, S., Yazdani, B., Cheshmazar, E., Razmpoosh, E., Janani, L., Raji Lahiji, M., & Shidfar, F. (2021). Effects of synbiotic supplementation on serum adiponectin and inflammation status of overweight and obese breast cancer survivors: A randomized, triple-blind, placebo-controlled trial. Supportive Care in Cancer, 29(7), 4147–4157. https://doi.org/10.1007/s00520-020-05926-8 (B)
  12. Sharif, S., Van der Graaf, Y., Cramer, M. J., Kapelle, L. J., de Borst, G. J., Visseren, F. L. J., Westerink, J., & SMART study group. (2021). Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovascular Diabetology, 20(1), 220. https://doi.org/10.1186/s12933-021-01409-0
  13. Usharani, P., Mateen, A. A., Naidu, M. U. R., Raju, Y. S. N., & Chandra, N. (2008). Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus: A randomized, parallel-group, placebo-controlled, 8-week study. Drugs in R&D, 9(4), 243–250. https://doi.org/10.2165/00126839-200809040-00004 (B)
  14. Vaez, S., Parivr, K., Amidi, F., Rudbari, N. H., Moini, A., & Amini, N. (2023). Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: A randomized clinical trial. American Journal of Reproductive Immunology , 89(3), e13644. https://doi.org/10.1111/aji.13644 (B)
  15. Valle Flores, J. A., Fariño Cortéz, J. E., Mayner Tresol, G. A., Perozo Romero, J., Blasco Carlos, M., & Nestares, T. (2020). Oral supplementation with omega-3 fatty acids and inflammation markers in patients with chronic kidney disease in hemodialysis. Applied Physiology, Nutrition, and Metabolism, 45(8), 805–811. https://doi.org/10.1139/apnm-2019-0729 (B)

Disclaimer

This site is intended solely as an informational reference tool for practicing healthcare professionals. The content provided is not intended to be for medical diagnosis or treatment, is not a substitute for your professional judgment, and is not meant to provide you with medical or professional advice. You should evaluate and independently confirm the appropriateness of the content provided, and you should rely on your experience and judgment and other available resources when applying the provided content to an actual patient care situation. While content has been obtained from sources believed to be reliable, we cannot and do not guarantee the accuracy, validity, timeliness, or completeness of the content.